ThmDex – An index of mathematical definitions, results, and conjectures.
Result R2074 on D529: Map inverse image
Isotonicity of inverse image
Formulation 0
Let $f : X \to Y$ be a D18: Map such that
(i) \begin{equation} E \subseteq F \subseteq Y \end{equation}
Then \begin{equation} f^{-1}(E) \subseteq f^{-1}(F) \end{equation}
Proofs
Proof 0
Let $f : X \to Y$ be a D18: Map such that
(i) \begin{equation} E \subseteq F \subseteq Y \end{equation}
If $f^{-1}(E)$ is empty, then result R7: Empty set is subset of every set establishes the claim so that we may assume that $f^{-1}(E)$ is nonempty. If \begin{equation} x \in f^{-1}(E) = \{ z \in X : f(z) \in E \} \end{equation} then $f(x) \in E$. Since $E$ is contained in $F$, then the transitivity of the subset relation guarantees that $f(x) \in F$ and therefore $x \in f^{-1}(E)$. Since $x \in f^{-1}(E)$ was arbitrary, we have the inclusion $f^{-1}(E) \subseteq f^{-1}(F)$,. $\square$