ThmDex – An index of mathematical definitions, results, and conjectures.
Sendov's conjecture
Formulation 0
Let $z \mapsto f(z) : = \sum_{n = 0}^N a_n z^n$ be a D4312: Complex polynomial function such that
(i) \begin{equation} \forall \, z \in \mathbb{C} \left( f(z) = 0 \quad \implies \quad |z| \leq 1 \right) \end{equation}
(ii) \begin{equation} \mathsf{Ker}(f) : = \{ z \in \mathbb{C} : f(z) = 0 \} \end{equation}
Then \begin{equation} \forall \, z \in \mathbb{C} \left( f'(z) = 0 \quad \implies \quad \exists \, z_0 \in \mathsf{Ker}(f) : |z - z_0| \leq 1 \right) \end{equation}
Formulation 1
Let $z \mapsto f(z) : = \sum_{n = 0}^N a_n z^n$ be a D4312: Complex polynomial function such that
(i) \begin{equation} \mathsf{Ker}(f) : = \{ z \in \mathbb{C} : f(z) = 0 \} \end{equation}
(ii) \begin{equation} \mathsf{Ker}(f) \subseteq B[0, 1] \end{equation}
Then \begin{equation} \forall \, z \in \mathbb{C} \left( f'(z) = 0 \quad \implies \quad \exists \, z_0 \in \mathsf{Ker}(f) : z \in B[z_0, 1] \right) \end{equation}
Formulation 2
Let $z \mapsto f(z) : = \sum_{n = 0}^N a_n z^n$ be a D4312: Complex polynomial function such that
(i) \begin{equation} \mathsf{Ker}(f) : = \{ z \in \mathbb{C} : f(z) = 0 \} \end{equation}
(ii) \begin{equation} \mathsf{Ker}(f') : = \{ z \in \mathbb{C} : f'(z) = 0 \} \end{equation}
(iii) \begin{equation} \mathsf{Ker}(f) \subseteq B[0, 1] \end{equation}
Then \begin{equation} \forall \, z \in \mathbb{C} \left( z \in \mathsf{Ker}(f') \quad \implies \quad \exists \, z_0 \in \mathsf{Ker}(f) : z \in B[z_0, 1] \right) \end{equation}